Epidermal growth factor (EGF) has been shown to stimulate survival in diverse cells in vitro. In the present study, the effects of EGF and the EGF-related signaling pathway on proliferation of chicken primordial germ cells (PGCs) were investigated. Results showed that EGF (10–100 ng/ml) increased the number and area of PGC colonies in a time- and dose-dependent manner. EGF also activated PKC, a process that was inhibited by AG1478 (an EGFR tyrosine kinase inhibitor) and ethyleneglycol-bis-(betaaminoethyl ether)-N,N'-tetraacetic acid (EGTA; an intracellular Ca2+ chelator). In addition, the degradation of NFKBIA and NFKB1 (p65) translocation was observed after EGF treatment, which was significantly blocked by pretreatment with AG1478, EGTA, H7, or SN50 (NFKB1-specific inhibitor). Furthermore, we found that EGF-induced cell proliferation was significantly attenuated by AG1478, EGTA, H7, and SN50, respectively. On the other hand, inhibition of EGFR, Ca2+/PKC, or NFKB1 abolished the EGF-stimulated increase in the expression of cyclins CCND1 and CCNE1, cyclin-dependent kinase 6 (CDK6), CDK2, and BCL2, and restored the EGF-induced inhibition of BAX expression and caspase 3/9 activity, indicating that EGFR, PKC, and NFKB1 signaling cascades were involved in EGFstimulated DNA synthesis and antiapoptosis action. In conclusion, EGF stimulated proliferation of chicken PGCs via activation of Ca2+/PKC involving NFKB1 signaling pathway. These observations suggest that EGF signaling is important in regulating germ cell proliferation in the chicken embryonic gonad.
If you need any literature regarding any of our products or services, please do not hesitate to submit a request.
Trusted by biotech leaders worldwide for over 40+ years of delivering high quality, fast and scalable synthetic biology solutions.